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This study examined various types of remote-sensing data that have been acquired during a 12-

month period over a portion of the Colorado River corridor to determine the type of data and conditions 
for data acquisition that provide the optimum classification results for mapping riparian vegetation.  
Issues related to vegetation mapping included time of year, number and positions of wavelength bands, 
and spatial resolution for data acquisition to produce accurate vegetation maps versus cost of data.  Image 
data considered in the study consisted of scanned color-infrared (CIR) film, digital CIR, and digital 
multispectral data, whose resolutions from 11 cm (photographic film) to 100 cm (multispectral), that were 
acquired during the Spring, Summer, and Fall seasons in 2000 for five long-term monitoring sites 
containing riparian vegetation.  Results show that digitally acquired data produce higher and more 
consistent classification accuracies for mapping vegetation units than do film products.  The highest 
accuracies were obtained from nine-band multispectral data; however, a four-band subset of these data, 
that did not include short-wave infrared bands, produced comparable mapping results.  The four-band 
subset consisted of the wavelength bands 0.52-0.59 µm, 0.59-0.62 µm, 0.67-0.72 µm, and 0.73-0.85 µm.  
Use of only three of these bands that simulate digital CIR sensors produced accuracies for several 
vegetation units that were 10% lower than those obtained using the full multispectral data set.  
Classification tests using band ratios produced lower accuracies than those using band reflectance for 
scanned film data; a result attributed to the relatively poor radiometric fidelity maintained by the film 
scanning process, whereas calibrated multispectral data produced similar classification accuracies using 
band reflectance and band ratios.  This suggests that the intrinsic band reflectance of the vegetation is 
more important than inter-band reflectance differences in attaining high mapping accuracies.  These 
results also indicate that radiometrically calibrated sensors that record a wide range of radiance produce 
superior results and that such sensors should be used for monitoring purposes. 
 

When texture (spatial variance) at near-infrared wavelength is combined with spectral data in 
classification, accuracy increased most markedly (20-30%) for the highest resolution (11-cm) CIR film 
data, but decreased in its effect on accuracy in lower-resolution multi-spectral image data; a result 
observed in previous studies (Franklin and McDermid 1993, Franklin et al. 2000, 2001).  While many 
classification unit accuracies obtained from the 11-cm film CIR band with texture data were in fact higher 
than those produced using the 100-cm, nine-band multispectral data with texture, the 11-cm film CIR data 
produced much lower accuracies than the 100-cm multispectral data for the more sparsely populated 
vegetation units due to saturation of picture elements during the film scanning process in vegetation units 
with a high proportion of alluvium.   Overall classification accuracies obtained from spectral band and 
texture data range from 36% to 78% for all databases considered, from 57% to 71% for the 11-cm film 
CIR data, and from 54% to 78% for the 100-cm multispectral data.  Classification results obtained from 
20-cm film CIR band and texture data, which were produced by applying a Gaussian filter to the 11-cm 
film CIR data, showed increases in accuracy due to texture that were similar to those observed using the 
original 11-cm film CIR data.  This suggests that data can be collected at the lower resolution and still 
retain the added power of vegetation texture.  Classification accuracies for the riparian vegetation units 
examined in this study do not appear to be influenced by season of data acquisition, although data 
acquired under direct sunlight produced higher overall accuracies than data acquired under overcast 
conditions.  The latter observation, in addition to the importance of band reflectance for classification, 
implies that data should be acquired near summer solstice when sun elevation and reflectance is highest 
and when shadows cast by steep canyon walls are minimized. 
 
 
 
 Introduction 

 
 2



 
The Grand Canyon Monitoring and Research Center (GCMRC) of the U.S. Geological Survey 

studies the effects of water release from Glen Canyon Dam (operational in 1964) on the resources of the 
Colorado River within the Grand Canyon (from Lake Powell to Lake Mead) in order to develop release 
protocols that minimize adverse effects on river ecology.  These studies began in 1983, originally under 
the Glen Canyon Environmental Studies group.  The GCMRC is concerned with monitoring and 
preservation issues related to (1) terrestrial vegetation habitats; (2) aquatic food base and habitats; (3) 
sediment movement and storage (within the river channel and along the shore); and (4) cultural resources 
(e.g., archaeological and historic monuments, springs, and mineral deposits).  The monitoring program 
has relied mostly on in-situ measurements, supplemented by annual acquisition of black-and-white or 
natural-color aerial photographic products.  With the exception of photogrammetric analyses, use of these 
remote-sensing data have been limited to visual interpretation and mapping of surface features using 
unrectified prints, followed by the transference of the interpretations into a GIS environment.  This 
approach is error prone because (1) the amount of information shown on the photographic prints is less 
than the true spatial resolution of the film data and very much dependent on the photographic duplication 
process and (2) the transference of interpretative information to digital, rectified format adds another level 
of positional uncertainty.  Digital data formats (either scanned film or direct digital acquisition) lessen (in 
the case of scanned film) or eliminate (using digital cameras) these problems and provide databases that 
can be used directly in image processing or GIS environments, thus allowing more accurate, rigorous, and 
timely data analyses.  The river corridor monitored by GCMRC extends for more than 450 km and, 
therefore, cost for digital data (which may include multiple wavelength bands at high spatial resolution) is 
a major concern.  
 

In the Fall 1999, GCMRC started a remote-sensing initiative to study the capabilities and cost-
benefits of various types of multiple-wavelength remote-sensing data acquired at different spatial 
resolutions and in different seasons, specifically for achieving monitoring program objectives.  The 
primary objective of the first phase of the remote-sensing initiative was to identify candidate remote-
sensing instruments that satisfy GCMRC program-monitoring requirements.  During the year 2000, the 
selected suite of sensors was used to collect image data for various portions of the Colorado River.  This 
report summarizes the results of our examination of each of the collected remote-sensing databases to 
identify the data that provides the most cost-effective, accurate means for mapping riparian vegetation 
types and habitats.  Although remote sensing methods may never completely replace in-situ 
measurements, they have been shown in many instances to provide a cost-effective means of mapping 
large areas and to reduce the time and expense of field surveys, which in turn may allow expanded 
monitoring of the environment.  We examined the several image databases to address three issues for 
riparian mapping within the Grand Canyon: (1) data characteristics (number and wavelength of bands, 
spatial resolution, radiometric fidelity, texture) that provide reliable mapping accuracy, (2) seasonal 
dependency of data acquisition for mapping riparian species, and (3) cost of the data relative to their 
potential for improved ecosystem mapping.  We evaluated those remote-sensing technologies previously 
determined to be worth testing and, from the results of the evaluations, developed recommendations for 
instrumentation and data acquisition that best meet the requirements for monitoring long-term, riparian 
vegetation change within the Colorado River ecosystem. 
 

Previous Studies 
 

There have been numerous investigations into the use of remote-sensing data for mapping 
vegetation that, as a whole, have considered a wide range of scales and sensor technologies.  Much of this 
research began with the Landsat program using the spectral data in six nonthermal bands for forest and 
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crop inventory.  These data, and other spaceborne data, are relatively inexpensive ($0.02/km2), allowing 
temporal analysis to map vegetation species to an accuracy near 80% based on seasonal characteristics of 
the vegetation (Mickelson et al. 1998).  However, the 30-m resolution provided by Landsat is too low for 
our mapping purposes because riparian units vary in composition and form well below the 30 m scale. 
 

Airborne sensors can achieve much higher resolutions, generally less than 1 meter, and the cost 
for such data is declining (slowly) due to competition and better technology: the cost for airborne data 
correlates with the number of bands and spatial resolution of the data collection.  Thus, remote-sensing 
research is moving towards the use of higher spatial and spectral resolution data in efforts to improve 
vegetation mapping accuracies.  The following is a summary of results from recent studies describing the 
wavelength bands and resolutions of airborne data that have been used to map forest and riparian 
ecosystems and the accuracies obtained.  These previous results are presented in order of increasing 
spatial resolution. 
 

Trietz and Howarth (2000a) used nine spectral bands (between 0.4µm and 0.9µm) acquired from 
the Canadian Aeronautics and Space Institute (CASI) sensor at 6-m resolution to map coniferous forest 
ecosystems.  Their classification accuracies were 50% on average using only spectral data, and 57-63% 
using both spectral and textural data.  In another study, Trietz and Howarth (2000b) used a similar data 
set having 1 meter resolution to obtain classification accuracies of about 68% using spectral and textural 
data.  They concluded that 5-6 meter resolution was optimal for mapping forest ecosystems in Canada; 
the optimal resolution varied within this narrow range among different tree species due to variations in 
mean canopy diameter.  They also concluded that texture derived from a near-infrared band provided a 
superior measure of texture over that provided by visible-wavelength bands, because near-infrared energy 
penetrates vegetation canopy more than visible light and provides more structural information.  The latter 
conclusion was also drawn by a previous study (Chavez 1992) that examined a wide spectrum of 
vegetation (coniferous and deciduous forests, agriculture, riparian, and jungle).  Quackenbush et al. 
(2000) investigated the use of 1-m digital color-infrared (obtained from the Emerge CCD sensor) data for 
mapping forest stands.  They achieved an average overall accuracy of 71%, with accuracies for specific 
vegetation units ranging from 16% to 95%.  Coulter et al. (2000) used four-band (visible and near-
infrared) data at 1 m resolution (obtained from the digital Airborne Data Acquisition and Registration 
[ADAR] 5500 sensor) and digital orthophoto quarterquads (DOQQ’s) to map shrubland in southern 
California.  They found that (1) classification accuracy of 75-80% could be obtained from the digital data, 
(2) classification accuracies using the DOQQ’s were correspondingly lower (62-67%), and (3) post-
classification field visits improved the final map accuracies by about 10%.  They attributed the lower 
mapping accuracies obtained by the CIR photographic data to the inferior radiometric fidelity of the 
scanned photographic product relative to that of the digital camera.  These results are supported by a more 
general study by Light (1996) who compared photographic and digital camera systems and determined 
that digital cameras provide two main advantages over photographic systems.  First, digital systems can 
record larger dynamic ranges in radiance than film.  Second, digital cameras record the reflected signals 
directly during data collection and retain a higher radiometric fidelity of surface radiance than do scanned 
photographic images.  Franklin et al. (2000), using three- and five-band data in the visible and near-
infrared wavelength region that were acquired at five spatial resolutions that ranged from 0.3 m to 8 m 
(using the digital CASI sensor), found that (1) the highest resolution images produced lower classification 
accuracies (by 11-25%) than the lower resolution data; (2) classification accuracies improved the most 
(by 15-20 %) for the highest resolution imagery when texture was added in the analysis and the amount of 
increase in accuracy depended on the composition of the forest stand; and (3) the classification accuracies 
derived from the highest resolution data (45-75%) using spectral and textural data were close to or greater 
than the accuracies derived from the lower resolution data.    Franklin et al. (2001), using similar (1 m 
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resolution) data for forest mapping, obtained an overall mapping accuracy of 75%, with texture adding 
nearly 21% over that provided by the spectral data alone.  Using even higher resolution (30 cm), three-
band (green, red, and near-infrared) data Butt et al. (1998) were able to map riparian vegetation around 
Lake Tahoe to an accuracy of 72-74%. 
 

In a recent study that is closely related to the present study in terms of vegetation type and 
geographic location, Weber and Dunno (2001) examined 2.5-m resolution data from the Airborne 
Terrestrial Applications Sensor (ATLAS; 14 bands between 0.45 µm and 12.2 µm) to determine how well 
these data could map riparian vegetation units within the Hopi Indian Reservation in northern Arizona.  
They found that 4 of the 14 bands (0.63-0.69 µm, 0.76-0.90 µm, 1.55-1.75 µm, and 2.08-2.35 µm) were 
most useful for mapping the riparian vegetation under consideration.  Mapping accuracies obtained using 
maximum likelihood classification were about 40%.  They attributed the rather low accuracies to: (1) 
spectral similarities of particular vegetation species (e..g., tamarisk and coyote willow); (2) ambiguities 
caused by an alluvium signal mixed with vegetation, even though they attempted to remove the alluvium 
using a vegetation index mask; and (3) the low resolution of the digital data (2.5 m) in which the 
compositions of units varied at smaller scales and were not detected or were confused with other units.  
The problems associated with spectral similarity noted by Weber and Dunno (2001) were noted as a 
potential problem by previous studies using vegetation spectra obtained from field spectroradiometers 
(e.g., Price 1994, Cochrane 2000). 
 

Our current study examines airborne remote-sensing data that include the entire range of airborne 
data reviewed above to determine the capability of these data for mapping riparian vegetation along the 
Colorado River relative to their cost.  Our databases include: (1) scanned CIR photography, digital CCD 
CIR imagery, and multispectral scanner data; (2) spatial resolutions from 11 cm to 100 cm; and (3) 
seasonal data and even data acquired under overcast sky conditions.  These data are described in the 
following section. 
 

Image Data and Study Sites 
 

During the first year of the GCMRC remote sensing initiative, several remote-sensing databases 
were acquired that cover a range of sensor technologies and costs from scanned photographic CIR and 
digital CCD CIR data (both costing $225/line km) to multispectral scanner data (costing $620/line km).  
Using the Kodak DCS460CIR CCD camera (3072 x 2048; Quackenbush et al. 2000) that is operated by 
Emerge Corporation, airborne CIR image data were acquired in September, 1999 under clear sky 
conditions.  These data were acquired at a stated spatial resolution of 30.5 cm, although comparison of 
these data with other 30 cm data suggests that the data were collected at lower resolution (closer to 60 
cm) and resampled to 30.5 cm.  The CCD sensor collects 3 bands (green and near-infrared, red and near-
infrared, and near-infrared) and subtracts the near-infrared signal using proprietary software from the two 
mixed-wavelength bands to produce a three-band CIR data.  The sensor records radiance as 12-bit values 
which are converted to 8-bit values during the post-processing phase to optimize the recorded radiance 
range and provide a dynamic radiance range that exceeds that of CIR film. 
 

Color-infrared photography was acquired at three times in 2000: (1) in March under clear-sky 
conditions, (2) in July under clear-sky conditions, and (3) in September under uniformly overcast sky 
conditions.  Each acquisition used Kodak Aerochrome II Infrared NP Film SO-134, whose three emulsion 
layers are sensitive to light within the green and blue, red and blue, and near-infrared and blue wavelength 
regions.   The late March and early September CIR imagery were acquired at 30.5-cm and 28-cm spatial 
resolutions, respectively, while the early July CIR imagery were acquired at 11-cm spatial resolution, 
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which is the resolution that has been previously acquired by GCMRC.  The three sets of CIR film were 
converted to digital imagery using an Intergraph PhotoScan TD Photo Digitizing System.  Scanner 
settings (transmissivity, film density, and gamma) were set manually by visually matching image tone, 
contrast, and brightness on the scanned image to that observed on the film in transmitted light. 
 

Advanced Thematic Mapper (ATM or Daedalus model 1268) data were acquired in July, 2000 
between river miles (RM) 30 and 74 (river miles in the Grand Canyon are referenced to RM 0 at Lee’s 
Ferry, Arizona).  The ATM sensor collected data in 12 channels at a spatial resolution of 100 cm.  The 
wavelength bands for the ATM channels are listed in Table 1.  The signal-to-noise ratio (SNR) for each 
ATM channel (Table 1) was determined using the method of Gao (1993).  A few of the ATM channels 
were not used in this study: channel 1 was too noisy (as indicated by its very low S/N ratio); channel 11 
(the high-gain, thermal-infrared band) was mostly saturated due to its high gain state and the very high 
surface and ambient-air temperatures in the Canyon during July; and channel 12 (the low-gain, thermal-
infrared band) showed extremely little variance between the various riparian vegetation units. 
 

The Emerge CIR data and the March 2000 CIR data were provided in orthorectified form with 
positional accuracies of 6-8 meters and 1-2 meters, respectively, while the ATM data were provided in 
georectified form with positional accuracies of 2-3 meters.  The remaining two data sets were provided as 
point-perspective, raw image data.  In order to use these data with the polygon maps of the riparian 
vegetation that we use in this study as “ground truth”  (Kearsley and Ayers 2000), the positional accuracy 
of the image data had to be rectified at better accuracies than that provided.  A digital, orthorectified 
panchromatic database with 18-cm spatial resolution and a positional accuracy of 30 cm provided the 
control to rectify all of the image data.  On average, image rectification for each selected study site 
required at least 35 control points and use of a first-order or second-order polynomial transformation to 
produce co-registration with the panchromatic image base to within one image picture element.  Some 
study areas with more topographic relief required almost twice the average number of control points.  
Rectification was performed from image to map base using the State Plane coordinates for points located 
on the panchromatic image that could also be recognized on the multiple-band images. 
 

The five multiple-band image data sets coincide between RM 30 and 74; this coverage was 
limited by the smaller coverage provided by the ATM data.  Along this stretch of the Colorado River are 
five long-term, riparian-vegetation monitoring sites of the GCMRC.  We selected all five sites for detailed 
analyses.  These sites are shown on Figure 1 and are located at RM 43.1, 51, 55.5, 68.2, and 71.4.  Delays 
in data delivery resulted in a lack of coverage of sites RM 51, 55.5, and 71.4 for the March film CIR and 
the September film CIR.  However, the vegetation units in the remaining two sites (RM 43.1 and 68.2) 
include many of the units found at these three sites.  Vegetation units within each study site are mapped 
annually and were most recently field mapped by Kearsley and Ayers (2000).  We used their recent 
vegetation maps because they correspond the closest in time to our data acquisitions.  Kearsley and Ayers 
(2000) mapped the riparian vegetation using the vegetation classification system developed by Spence et 
al. (1995), referred to as the SRFR classification in this paper, which is merely the first initials of all the 
authors’ last names.  This classification system was specifically designed for the Colorado Plateau 
Province and largely parameterizes local vegetation series and association.  The vegetation types (units) 
that have been mapped at the five study sites are identified in Tables 2 through 6; the genus and species 
corresponding to the common vegetation names are cross referenced in Table 7.  Between the different 
study sites there is duplication of vegetation types or units, which also allows determination of the 
consistency with which the remote sensing data correctly or incorrectly identify a unit.  The spatial 
distributions of the vegetation units within each study site are presented with our classification analyses of 
the different sites.  In general, the average height and diameter of the riparian species decrease in the 
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order of tree, shrub, forbaceous, herbaceous, and grass.  There is very little understory in tamarisk and 
mesquite stands, which are 3-5 meters high.  Shrubs such as willows and Baccharis are generally about 1-
2 meters high, while arrowweed averages about 1 meter in height.  All three of these species form low 
density stands and can have grass understories.  The average height of forbaceous plants are similar to 
shrubs, but are generally more dense. 
 

Data Analysis 
 

Calibration to Ground Reflectance   
 

Recorded digital values for the nonthermal channels from the Bechtel ATM sensor were 
converted to ground reflectance using the empirical line method (Roberts et al. 1986, Conel et al. 1987, 
Farrand et al. 1994).  This method correlates recorded digital band values to known band reflectance 
values of surface targets.  In June, 2000 we conducted field spectral surveys of various geologic and 
vegetation materials at many locations between RM 30 and 74 using an Analytical Spectral Devices 
(ASD) field spectroradiometer and a Spectralon standard (presented in a later section).  For image 
calibration we used the brightest and darkest materials within the study sites.  Bright surface targets 
consisted of large, uniform sand bar deposits.  The spectral reflectances of the sand bar surfaces at various 
locations along the Colorado River corridor were quite consistent.  Dark objects used were areas having 
the lowest and most uniform digital values, such as shadowed areas in deep side canyons and deep, clear 
water without sun glint.  The observed digital numbers of the nine ATM bands within such areas were 
consistent throughout this river section and were assumed to represent a reflectance of 1% because few 
natural surfaces have no reflectance.  A third surface (a dense, closed-canopy Tamarisk grove at 
Nankoweap Rapids at RM 52.5) with intermediate reflectance values in some of the ATM band 
wavelengths was also used in order to better define the linear regression between recorded ATM band 
values and ground reflectance at some wavelengths.  Regression of corresponding ground reflectance 
values and recorded digital values within each ATM wavelength band produced a gain and offset value 
for each Bechtel ATM wavelength band, which were then used to convert each ATM band’s recorded 
digital values to surface reflectance. 
 

Calibration of the Emerge digital CIR data were performed in a similar manner to that of the 
Bechtel MS data.  The CIR film was not digitized using the same scanner settings, which would have 
maintained some consistency in image values along the river corridor and would have allowed 
extrapolation of ground-truth spectral data between study sites.  Rather, scanner settings were chosen 
independently for each flight line of film to optimize information content.  In addition, atmospheric 
scattering within the three different wavelength regions recorded by the Kodak film could not be reliably 
estimated because the Kodak SO-134 film emulsions for the green, red, and near-infrared wavelengths are 
also sensitive to the blue wavelength.  Thus, shadow areas without vegetation could have near-infrared 
digital values similar to areas of dark or shaded vegetation.  Calibration of the film-derivative image data 
was therefore accomplished by correlating ground reflectance observed in the Bechtel wavelength bands 
to recorded digital values in the film-derivative image data using bright and dark surface targets and 
uniform, closed-canopy vegetation as reference targets within each study area.  This required convolving 
the Bechtel ATM wavelength bands to corresponding CIR film wavelengths. 
 

In order to restrict our classification analyses to only vegetation, we created NDVI (Normalized 
Difference Vegetation Index) images from each color database for each study area.  We used the smallest 
occurrence of vegetation observable in each color image as targets for determining the lowest NDVI value 
that represented mostly vegetation. Where possible, the same target area was used for determining this 
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NDVI value in all five image databases.  Within a particular study site the derived NDVI values for the 
five different color databases were very similar, but did differ somewhat between study areas, possibly 
due to differences in the target vegetation.  These derived vegetation masks were then used to delete 
picture elements in the image databases and in the ground-truth vegetation maps that were not vegetated.  
It has been shown that isolation of the specific material of interest can improve classification results 
(Hutchinson, 1982). 
 
Texture Analysis of Remote-Sensing Data for Vegetation Discrimination.   
 

Different species of vegetation can exhibit textural variations in image data due to differences in 
their branch (canopy) structure and average plant spacing (density).  Differences in image texture between 
species have been used to supplement spectral data in the classification of vegetation (e.g., Lacaze et al. 
1984, Franklin et al. 2000, 2001).  For example, changes in variance as a function of distance from an 
object (referred to as a semivariogram) are useful in discrimination between various vegetation species 
(Woodcock et al. 1988a, b).  Generally, the addition of texture in spectral classification of vegetation 
increases the classification accuracy by 10-15% relative to the accuracy obtained using just spectral band 
data (Franklin and McDermid 1993, Franklin et al. 2000, 2001).  There have been instances, however, 
where the addition of texture had little effect on the accuracy of the results (Franklin and McDermid 
1993, Franklin et al. 2000, 2001).  In general, forest-mapping classification accuracies in the range of 65-
80% have been obtained with spectral and textural data using co-occurrence filters.  Co-occurrence filters 
examine the similarity of values between two rectangular areas separated by a particular distance.  A 
variety of mathematical treatments of the data within both co-occurrence rectangles have been devised 
(Haralick et al. 1973); a few of these algorithms have proven to be more useful than others (e.g., entropy, 
contrast, and inverse difference moment).  A disadvantage of co-occurrence filters is that they require at 
least one to two orders of magnitude more processing time than the more common occurrence filters (e.g., 
variance, mean, range, skewness).  We performed some preliminary classification tests using co-
occurrence and occurrence filters for variance and entropy on some study areas and found that co-
occurrence filters did not markedly increase the classification accuracies relative to the results obtained 
using corresponding occurrence texture filters.  Thus, our study concentrated on occurrence texture filters. 
 

Tests of various occurrence texture filters show that variance was one of the most useful measures 
for discriminating vegetation units within the study areas.  Entropy provided only slightly better 
discrimination (1-2% absolute accuracy increase over variance), but the entropy algorithm requires 
significantly more processing time than variance.  Because bare ground was removed from the image data 
and set to zero, texture filters will produce anomalously high values at the edges of the vegetated (non-
zero) picture elements.  In order to eliminate this edge effect with the texture filters, we redesigned the 
variance filter to consider only non-zero data in its calculation of variance.  A series of variance filters 
using different cell dimensions were performed on the near-infrared band of all five color image 
databases.  Previous research has shown that near-infrared bands provide the most vegetation texture 
information (Chavez 1992, Trietz and Howarth 2000b).  The filter dimensions tested ranged from 39 
(picture elements) to 99 for the 11 cm data, 19 to 51 for the 30 cm data, and 3 to 31 for the 100 cm data, 
in increments of two picture elements.  Our preliminary assessment of vegetation-unit texture at small 
dimensions (less than 3-5 meters) suggested that texture at such very small scales picks up too much 
intraspecies variations.  The change in unit variance as a function of filter dimension is shown for two 
examples in Figure2.  The change in variance with filter dimension for vegetation unit 5 in Figure 2b is 
similar to that seen in variograms.  Many of the databases for each study site produced unit variance 
distributions that cross, which helped define the filter dimension to provide optimum unit discrimination.  
There were instances, however, where unit variance distributions derived from a particular image 
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database for a study site were a set of parallel lines, which were not useful in defining an optimum filter 
dimension.  The filter dimension that provided the best separation between the units in the former cases 
could be determined visually, but we sought numerical confirmation of the exact filter dimension to make 
this analysis less subjective. 
 

For each study area, we statistically examined the variance results for each color image database 
to determine the filter dimension that best discriminated between the vegetation units.  The best filter 
dimension will produce average unit variance values that have (1) a large range and (2) a uniform, 
maximum spacing between unit variance within that range.  The maximum spacing in variance for a given 
range in variance is: spacemax = range / (n-1), where n is the number of vegetation units.  A measure of 
how close the set of unit variance values approach this maximum spacing for a given filter dimension was 
calculated in four steps: (1) determine the percentage of each unit’s variance within the range of variance 
found at the site, (2) numerically order these percentage values and subtract adjacent values, which results 
in n-1 values, (3) subtract spacemax (derived above) from each value, and (4) sum the absolute values from 
(3).  This sum (spacediff) yields a numerical measure of the degree to which the set of unit variances 
approaches maximum spacing for a particular filter dimension.  The smaller the value of spacediff, the 
closer the set of unit variances approaches maximum separation within the range of data.  Uniformity of 
separation of a set of unit variance values (spacedev) was determined by calculating the standard deviation 
of the set of absolute differences obtained in step (3).  The overall quantitative measure of the degree of 
discrimination provided by a particular filter dimension was determined by the relation:   discrim  = 
(range in variance) / (spacediff •  spacedev).  The filter dimension that results in the largest discrim value 
will be the most useful filter for unit discrimination for that particular study area.  The optimum filter 
dimensions resulting from our analyses of all image databases for all five study sites are plotted as a 
function of image resolution in Figure 3.  These values were subjected to least squares analyses to 
determine the equation that best represented the graphical relation.  A power law provided the best 
solution (R2 = 0.933); the least-squares equation is provided in Figure 3.  This equation was used to set 
the dimension for texture analysis of the near-infrared image from each multiple-band image database, 
which was then used with the spectral band data in our classification analyses.   
 

To verify our results for selection of an optimum texture filter dimension and to determine if a 
combination of variance filters may produce better classification results than a single texture filter, we 
produced two additional variance images using filter dimensions that were one-third and two-thirds of the 
dimension of our derived optimum filter dimension.  These additional filters were applied to the 11-cm 
CIR image data, the 30.5-cm Emerge data, and the 100-cm ATM data for study sites RM 51, 55.5, and 
71.4.  These sites were selected because our preliminary analyses indicated these sites present cases where 
texture greatly improved classification accuracy (RM 55.5 and 71.4) and where texture had little effect 
(RM 51).  We applied a maximum likelihood classifier to the spectral band data using each of the two 
intermediate texture images individually, then using all three texture images with the spectral band data.  
The results showed that only the classification employing all three texture images and the spectral band 
data exceeded the classification accuracy produced by using only the optimum texture image with the 
spectral band data.  However, the increase in accuracy provided by the two additional texture databases 
was less than one absolute percent.  Thus, the single optimum texture image was used in our classification 
analyses of the study sites.  
 
Classification of Remote Sensing Data  
 

Various supervised classifiers (Mahalanobis distance, maximum likelihood, minimum distance, 
spectral angle mapper, parallelepiped) were tested on the different databases to determine which classifier 
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provided the highest accuracy.  We found maximum likelihood consistently produced the highest 
accuracies and this method was used in all of the subsequent analyses.  Supervised classification requires 
training areas to obtain statistics from the remote-sensing databases for the materials to be mapped.  For 
each study site, training areas were established for each vegetation unit using the map polygons 
established by Kearsley and Ayers (2000) and thus the same training areas were used for all image data 
for a particular study area.  Our initial classification analysis used only the spectral bands from each 
image database.  Our second classification analysis used both the spectral bands and the near-infrared 
texture image from each image database.  The overall accuracies obtained from both of these analyses are 
shown in Table 8. 
 

The following observations can be made relative to vegetation classification using only spectral 
band information. 
 

1.  The ATM nine-band data produce the highest overall classification accuracies of all image 
databases used in this analysis, with the exception of study site RM 43.1 where the accuracy from 
the 11-cm image data is greater than that obtained from the ATM data. 

 
2.  Overall classification accuracy generally decreases with higher spatial resolution data in the 
10-100 cm range, except at study site RM 43.1.  The greater spatial detail provided by the highest 
resolution data may exceed that used to map the vegetation units in the field.  The inverse relation 
between classification accuracy and spatial resolution has been observed in other studies (e.g., 
Franklin et al. 2000).  The lower resolution image data average more of the surface during 
radiance collection, thus reducing interunit spatial variation seen by higher resolution data and 
consequently reducing the probability for mis-classification of vegetation units.   

 
3.  Not considering the September CIR film data that were acquired under overcast sky 
conditions, the accuracies obtained from the 11-cm and 30-cm data acquired under clear-sky 
conditions in the Spring, Summer, and Fall seasons are not appreciably different.  Thus, there 
does not appear to be a seasonal bias for mapping the riparian vegetation. 
4.  The September, 2000 28-cm CIR data for the five study sites produced the lowest 
classification accuracies of all five of the image databases that were investigated.  Two factors 
might may account for this.  First, the vegetation may have had lower chlorophyll contents at that 
time due to senescence.  However, the higher accuracies provided by the March 2000 CIR film 
and September 1999 Emerge data, both having comparable spatial resolutions to that of the 
September 2000 data, negate this possibility.  Second, the September 2000 CIR data were 
acquired during totally overcast sky conditions and, therefore, the reduced solar flux and resultant 
reduced surface reflectance may produce less spectral contrast between the different vegetation 
species. 

 
5.  Some of the classification accuracies are close to accuracies recently obtained (40%) in a 
classification study of similar riparian vegetation in Arizona (Weber and Dunno 2001), which 
used 2.5-m four-band (green, red , near-infrared, and two short-wave infrared bands) 
multispectral data.  However, many of the accuracies obtained from our image data are higher 
than 40%, which is attributed to the higher spatial resolution (≤100 cm) provided by our data.  
Therefore, there is a point at which reduced spatial resolution produces lower classification 
accuracy, which depends on the scale of the surface units. 

 
6.  Unlike some previous studies (e.g., Coulter et al. 2000), we do not observe a large difference 
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in the accuracies produced by the film-derived CIR versus the digital Emerge CIR at comparable 
resolutions.  This is probably due to our radiometric calibration of these data prior to 
classification.  Calibration is time consuming and, in terms of total expense, it would be 
preferable to use image data that provided radiometric fidelity without post processing, especially 
for high-resolution image data for large areas. 

 
With respect to the classification accuracies obtained using both spectral bands and texture, we 

make the following observations from Table 8. 
 

1.  The addition of texture increases classification accuracy in almost every case.  The increase is 
greatest for the highest resolution data (11 cm) and least for the lowest resolution data.  The 
increase in accuracy using the highest resolution data (11 cm) ranges from 5% to 30%, with three 
of five study areas showing increases of 20-30%.  Both results have been found in previous forest 
classification studies (e.g., Franklin et al. 2000, 2001). 

 
2.  The accuracies obtained using the highest resolution image data with texture are greater than 
that obtained from all other lower resolution data and even exceed the overall accuracies obtained 
from the 100-cm ATM data for two of the five study sites where overall accuracies obtained 
using spectral band data alone were closest between the 11-cm and 100-cm data. 

 
3.  Classification accuracies obtained from our riparian vegetation study sites are comparable to 
those obtained from classification analyses of forested regions (Franklin and McDermid 1993, 
Franklin et al. 2000, 2001). 

 
The overall classification accuracies reported above are derived by dividing total correctly 

classified picture elements by the total number of picture elements in the image area.  Thus, the overall 
classification accuracy is determined mostly by the highly populated units and may not reflect a large 
mis-classification of individual units.  This is shown in Table 8, which lists the classification accuracies 
obtained for the individual vegetation units using both spectral band and texture data.  It was noted above 
that the overall classification accuracies obtained using the September 2000 data (overcast sky conditions) 
were uniformly lower than the results from all other databases.  Table 8 shows that the results obtained 
for many vegetation units using the September 2000 data are as good as, and in some cases better than, 
those obtained from the other CIR film data and from the digital CIR and ATM sensors.  This is most 
marked for study site RM 68.2 (Table 8).  This suggests that data acquisition during overcast sky 
conditions would not be detrimental for mapping certain vegetation units, but such data would not 
provide the best overall classification map. 
 

The unit accuracies in Table 8 also show that the classification results provided by the 100-cm 
ATM data are not only generally higher but are also uniformly higher than the unit accuracies provided 
by the film and digital CIR data.  The 11-cm CIR film data produce more occurrences of large 
discrepancies in unit accuracy relative to the accuracies obtained from the ATM data.  These occur for 
vegetation units 1 and 5 at RM 43.1, unit 2 at RM 51, unit 5 at RM 55.5, and unit 5 at RM 68.2 (Table 8). 
 These vegetation units are the less densely populated and generally occur as scattered patches of 
vegetation on alluvium.  Thus, the small statistical base provided by these patchy units may not provide a 
spectral signature that is distinct from other units.  The March and September CIR film data do not show 
most of these large discrepancies in unit accuracy, except for vegetation unit 5 at RM 43.1.  These two 
CIR data were acquired at much lower sun elevation angles than the July CIR data and the film scanning 
process may have saturated these scattered vegetation patches so that their true radiance characteristics 
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were lost and made similar to other highly reflective units.  Overall, the digital Emerge CIR data produce 
much better results for these small, scattered units, which suggests that radiometric fidelity (capability of 
recording over a large radiometric range) is an important factor for attaining high accuracies for all 
vegetation units. 
 

Examination of the classification maps for study site RM 43.1 (Figures 4-10), specifically those 
obtained from the 11-cm film CIR data and the ATM data, shows that both data sets mapped much of 
vegetation unit 1 as unit 2.  Both vegetation units contain tamarisk, but unit 1 has tamarisk as a 
subordinate member (Table 2).  Their confusion, and the resulting low accuracies for unit 1 are 
understandable.  The 11-cm film CIR data classified most of vegetation unit 5 (coyote willow, dicoria, 
and russian thistle) as unit 4 (cattail and phragmites).  The sparse nature of both of these units and 
saturation during film scanning due to the dominance of alluvium in these units may not have produced 
distinct signatures for the two units.  The ATM data mapped much of unit 5 as unit 3 (coyote willow, 
equisetum, and Baccharis).  The spectral signatures of these two willow units may not be sufficiently 
different to allow discrimination by the classifier.  The classifier took the signature of the more-populated 
unit 5 as truth, but this type of mis-classification can be handled by post-processing analysis, whereas the 
mis-classification of unit 5 as a wetland (marsh) unit by the 11-cm film CIR data would require more field 
verification and adjustments. 
 

Within study site RM 51 (Figures 11-15), the 11-cm film CIR data could not distinguish between 
the units dominated by acacia shrubs (vegetation unit 2) and tamarisk (vegetation unit 3) and mapped 
much of unit 2 as tamarisk.  This is a problem in the classification map produced using the Emerge data as 
well.  Both the 11-cm film CIR and the 100-cm ATM data map much of the shoreline occurrences of 
tamarisk (vegetation unit 3) and coyote willow and Baccharis (vegetation unit 4) as vegetation unit 5 
(cattail and rush).  Unit 5 occurs only as sparse, scattered exposures, as do the shoreline occurrences of 
units 3 and 4, so that the signature for unit 5 must have been given more weight in the classifier.  The 
Emerge 30.5-cm data mapped unit 4 better than these other data, suggesting that calibrated data with at 
least 30 cm resolution may be necessary to distinguish such sparse, scattered occurrences of vegetation. 
 
Within study site RM 55.5 (Figures 16-20), the 11-cm film CIR data classified much of vegetation unit 5 
(sedge and rush) as unit 1 (phragmites and bent grass).  Both the 11-cm film CIR and the 30.5-cm Emerge 
CIR data over-represent the occurrence of unit 4 (mesquite and acacia).  On the other hand, the ATM data 
map large areas of tamarisk (unit 2) as willow and Baccharis (unit 3), however, vegetation unit 2 has 
subordinate Baccharis and the ATM may be mapping local concentrations of Baccharis.  Weber and 
Dunno (2001) reported a problem in distinguishing tamarisk from willow, but we did not have this 
problem in our other study sites that have both types of vegetation. 
 

Within study site 68.2 (Figures 21-27), vegetation unit 5 (cattail and rush) is under-represented in 
the classification maps produced by all five data sets.  The largest single exposure of unit 5 is mapped 
mostly as unit 1 (coyote willow, Baccharis, and equisetum).  The cattail and rush unit occurs where there 
is a high percentage of alluvium and removal of the alluvium using the NDVI may not have been 
complete.  The March 30.5-cm film CIR data produced the only map that depicts this exposure, in 
addition to other shoreline exposures.  The lower contrast provided by that data, which were acquired 
under overcast sky conditions, may have produced much less overexposure during the film scanning 
process.  All image data sets produce confusion between vegetation units 1 and 2; both vegetation units 
have willow as a dominant member and their separation by their subordinate species (Table 5) may not be 
possible. 
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Within study site RM 71.4 (Figures 28-32), both the 11-cm film CIR and 30.5-cm Emerge CIR 
over-represent vegetation unit 1 (phragmites and rush), mostly where unit 3 (arrowweed and camel thorn) 
occurs, but the 11-cm film CIR data do this much less so than the Emerge data.  Overall, there are very 
little differences between the maps produced by the 11-cm film CIR data and the ATM data at this site. 
 

In addition to radiometric fidelity, the consistently higher accuracies provided by the Bechtel 
ATM data can also be attributed to the larger amount of spectral information provided by the nine ATM 
bands relative to that of three CIR bands.  However, sensors that provide the short-wave infrared bands 
(e.g., the 1.69 µm and 2.25 µm bands within the ATM database) are more expensive for data acquisition 
than visible/near-infrared-wavelength sensors because the short-wave infrared bands require additional 
detectors.  Thus, we determined the relative importance of the nine ATM bands in mapping the riparian 
vegetation units by conducting classification analyses of the ATM data.  The first series examined the 
effect of omitting a single ATM band.  The band that produced the least effect on accuracy was selected 
for omission in subsequent analyses, as long as the decrease in accuracy from the original nine-band 
results was less than 10%.  Each subsequent series of analyses excluded the previously selected bands and 
each one of the remaining ATM bands individually.  All of these analyses included texture data.  The 
analyses ceased for a particular study area when all of the remaining bands to be omitted produced a 
decrease from the original accuracy by greater than 10%.  This process showed that the least useful ATM 
bands include bands 2, 5, 8, and 9.  This left ATM bands 3, 4, 6, 7, and 10 (see Table 1 for wavelengths). 
 The unit classification accuracies for each study site using this reduced band set are very close to that 
obtained using all nine ATM bands (Table 9).   
 

To determine the importance of including the remaining short-wave band (ATM band 10) in the 
classification, we performed classification analysis for each study site using only ATM bands 3, 4, 6, and 
7.  The results are compared with those using the reduced five-band and the full nine-band ATM data in 
Table 9.  Examination of the results from the reduced four-band ATM data indicates that there are three 
units with accuracies that are about 10% or more lower than the unit accuracies obtained from the full 
nine-band ATM database (Table 9) and that overall accuracies for the study sites are only 3-7% lower 
than those obtained from the nine-band ATM data.  Comparison of the classification maps produced by 
the reduced four-band ATM data set with those produced by the full nine-band ATM data set show that 
the two data sets produce very similar spatial results (e.g., Figures 33-37). 
 

Of all the bands within the reduced four-band ATM database, the omission of band 4 has the least 
effect of total unit accuracies; classification results using only ATM bands 3, 4, and 6 are also shown in 
Table 9 for comparison.  There are seven units in all of the five study areas that have accuracies of 10% or 
more lower the those obtained from the full ATM database, but only one corresponds to the three low unit 
accuracies observed in the four-band results.  In fact, the accuracies for vegetation units 4 and 5 in study 
site RM51 actually increased by excluding ATM band 4 (Table 9).  This reduced three-band database 
consists of wavelength bands that are very similar to conventional CIR sensors.  For comparison, we also 
show our previous classification results obtained using the 11-cm film CIR band and texture data (Table 
9).  There are only two cases (vegetation unit 2 at site RM 51 and vegetation unit 1 at site RM 71.4) 
where lower accuracies coincide in the 11-cm film CIR film results and in the reduced three-band ATM 
results.  Thus, a combination of well-calibrated data (such as produced by the ATM sensor) at a higher 
resolution (for better texture data) may approach or even match the accuracies provided by the nine-band 
ATM data, whose results are within the range of accuracies obtained in recent forest classifications.  
Texture derived from 30-cm data appears to only add about 5% accuracy (Table 8).  The use of data with 
resolutions better than 30 cm seems warranted on a purely textural basis, however, 11-cm digital data 
collection for the entire 476-km long river corridor will be extremely expensive, commencing with data 
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acquisition and magnifying throughout the data storage and data processing phases.  In addition, higher 
classification accuracies appear to be obtained at resolutions lower than 11 cm when only spectral data 
obtained from calibrated, digital sensors are considered (such as the Emerge CDD and ATM scanner; 
Table 8). 
 

In order to determine if image data with a resolution between 11 cm and 30 cm could provide 
valuable textural information for increased image classification, we digitally reduced the spatial 
resolution of the 11-cm CIR film data using a Gaussian filter to produce CIR data with a 20-cm resolution 
for each study site.  Using these data for each site, texture was derived from the near-infrared band and 
used with the reduced-resolution CIR band information in maximum likelihood classification.  The results 
from these analyses indicate that classification accuracies obtained at the 11-cm scale were maintained at 
the 20-cm scale and that improvements in classification accuracy due to texture were comparable to those 
obtained using 11-cm image data.  The fact that the accuracies did not increase at lower spatial resolution 
using the same data also suggests that decreased resolution alone does not improve classification results 
and that radiometric performance of a sensor is a major factor in achieving high mapping accuracies from 
remote-sensing data. 
 

Higher resolution image data present more area of shaded vegetation within an image and thus a 
higher probability for mis-classification of shaded picture elements using band reflectance data.  In an 
attempt to overcome this potential problem, we examined the use of band ratios in all of the CIR band 
data because band ratios may normalize the effects of canopy topography to a first order.  Theoretically, 
band ratios should produce better classification accuracies if canopy shading is a primary issue and if the 
image signal-to-noise ratios are relatively high, otherwise the noise within the data can produce poorer 
results.  We found, for all five study areas, that the majority of classification accuracies for the vegetation 
units obtained from band ratios and texture were lower than those obtained using band reflectance and 
texture data, except for the ATM data.  This suggests that albedos of the vegetation species are more 
important for accurate classification than the relative reflectance differences between bands, agreeing with 
observations made using field spectral data (Cochrane 2000, Weber and Dunno 2001).  These results also 
further reinforce the importance of obtaining image data with sensors that can record a wide dynamic 
range of radiance. 
 
Field Spectroradiometric Data Analysis 
 

During June and September of 2000 we acquired spectroradiometric measurements of many 
vegetation species between RM -15 and 60 along the Colorado River.  The field measurements were 
obtained using an Analytical Spectral Devices (ASD) spectroradiometer that records spectral radiance 
between 0.4 µm and 2.5 µm in intervals of 0.001 µm.  Data were collected in two ways.  First, a spectrum 
was acquired of the in-situ plant.  Second, leaves from the plant were extracted and placed on a flat, black 
plate, covered by a clear glass plate that was used to compress the leaves to a flat surface, and a spectrum 
was acquired of the compressed plant.  This method removes the possible radiance from the understory 
ground that might contribute to the in-situ measurements.  After each in-situ and black-plate 
measurement, a spectrum of a Spectralon white standard whose geometric orientation to the Sun matched 
that of the sample was acquired.  The Spectralon standard spectrum for a sample was used to normalize 
the sample measurement and to produce a reflectance spectrum of the sample. 
 

The resulting collection of vegetation spectra were examined to determine intraspecies variation 
and to form average reflectance spectra for a species sample collection that had similar spectral 
characteristics.  Samples of a plant species that were anomalous were maintained as separate reflectance 
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spectra for further analysis.  Our sample collection consisted of 21 different plant species and a total of 45 
reflectance spectra that included spectral variations of particular species.  These 45 sample spectra were 
subjected to a statistical analysis to determine the combination of wavelength bands that provided the best 
discrimination among the sample collection.  The analyses were performed using a three-band and a four-
band approach.  The statistical measure of discrimination used in our analyses was the determinant of the 
correlation matrix formed by a particular three- or four-band combination (Crippen 1989).  The analysis 
algorithm iterated through all possible wavelength bands that can be formed between 0.5 µm and 2.4 µm, 
with wavelength bandwidths varying between 0.02 µm and 0.10 µm.  These analyses did not consider the 
blue wavelength (0.4-0.5 µm) or the short-wave-infrared wavelength (2.4-2.5 µm) bands because of 
inherent high noise levels.  Two sets of analyses were performed for both the three- and four-band cases; 
one set of analyses considered only the 0.5-1.0 µm region and the other set of analyses considered the 
entire 0.5-2.4 µm region.  These two separate analyses were used to evaluate the relative merits of using 
more sophisticated sensor data (i.e., more expensive data) that could acquire spectral data within the 
short-wave infrared region between 1.0 µm and 2.4 µm.  The following observations and conclusions 
summarize the results from these analyses of the plant spectral data. 
 

1.  Three-band and four-band spectral analyses for the 0.5-1.0 µm region produced consistent 
band centers regardless of bandwidth.  The three-band analysis indicated that maximum 
discrimination of the riparian plant species are achieved using bands centered within the 
following ranges: 0.53-0.54 µm, 0.66-0.67 µm, and 0.79-0.815 µm (wavelength centers shown in 
Figure 38).  The four-band analyses indicated an additional band center at 0.70 µm (Figure 38), 
but this fourth wavelength band did not produce a higher determinant value (better theoretical 
discrimination) than the three bands listed above. 

 
2.  Three-band and four-band spectral analyses for the 0.5-2.4 µm region also produced consistent 
band centers regardless of bandwidth.  The three-band analysis indicated that maximum 
discrimination of the riparian plant species are achieved using bands centered within the 
following ranges: 0.52-0.54 µm, 0.78-0.80 µm, and 2.02-2.07 µm (wavelength centers shown in 
Figure 39).  The first two of these band-center ranges nearly coincide with two of the band 
centers indicated by the analyses within the 0.5-1.0 µm region.  The four-band analyses within 
the 0.5-2.4 µm region indicated an additional band center in the range of 1.64-1.67 µm (Figure 
39). 

 
3.  The optimum four-band determinant value obtained from the 0.5-2.4 µm wavelength region 
was much higher than the optimum four-band determinant obtained from the 0.5-1.0 µm 
wavelength region.  This suggests that the addition of a short-wave infrared wavelength band 
would produce better vegetation discrimination (and possibly higher accuracy) than the addition 
of another visible or near-infrared wavelength band. 

 
4.  Three- and four-band determinant analyses indicated optimal band centers that are very close 
to the Bechtel ATM band centers that proved most useful for three- and four-band classification 
of riparian vegetation in our study areas, with the most useful set of ATM bands for classification 
of riparian vegetation centered at 0.55 µm, 0.69 µm, 0.79 µm, and 2.25 µm. 

 
5.  The results from the determinant analyses seem to prefer very narrow bandwidths (0.02 µm), 
but in practical applications for imaging at high spatial resolution (required for GCMRC) it may 
be necessary to use broader wavelength bands to increase signal-to-noise ratios due to the short 
dwell (integration) time of the sensor over a particular picture element.  Broader wavelength 
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bands (0.05-0.06 µm in width) do not significantly lower the determinant ranking of a particular 
band combination. 

 
6.  In terms of ambiguities in spectral discrimination, the three-band spectral approach restricted 
to the 0.5-1.0 µm region may not be able to distinguish between sedge, sand sage, and rush and 
between grass or sedge and blue tamarisk.  The first ambiguity is not an important issue, and the 
second ambiguity can be resolved using texture because the texture of tamarisk is very different 
from that of grass and sedge.  The addition of the fourth optimal band within this spectral region 
presents these same ambiguities.  Thus, there is no justification for using a fourth band within the 
0.5-1.0 µm region.  Using an optimal band above 1.0 µm presents fewer ambiguities, but 
inclusion of a short-wave infrared band may also increase the cost for data collection. 

 
Cost-benefit analysis 
 

Field surveys during 1999 covered 11 study sites.  The average length of the study sites was 
about 0.45 km resulting in a total survey length of about 5 km.  The cost for the surveys for the 11 sites 
was about $79,000, including post-field analysis, which equates to a cost of about $16,000/site-km.  
Assuming that classification of appropriate remote-sensing data can conservatively provide mapping 
accuracies near 60% (although our mapping accuracies may be understated as discussed below), 
subsequent field surveys would have to spot check the results and may have to apply conventional survey 
methods to parts of  the study sites.  The cost of the remote-sensing data acquisition and analysis may be 
about $700/site-km, resulting in a total (field and remote-sensing) cost for an annual riparian mapping 
campaign of about $8,700/site-km, assuming field work is about 50% more efficient using preliminary 
classification results from remotely sensed data.  The lower cost for a combined remote-sensing and field 
approach would therefore allow almost twice as much monitoring per year for the same current 
expenditure.  The cost for the data acquisition (approximated at $350/site-km) that is factored into this 
analysis is probably high because other monitoring programs make use of the remote-sensing data. 
 

The cost-benefit of using remotely sensed data for mapping riparian vegetation may be 
understated in this study because our remote-sensing results are being compared with vegetation maps 
compiled by Kearsley and Ayers (1999).  Although mapping vegetation collections generally produces 
higher accuracies than mapping individual species, there are many “mis-classifications” in our remote-
sensing results due to the ability of the remote-sensing data to identify individual stands of a species 
within a collection of vegetation as defined by Kearsley and Ayers (1999).  Visual mapping techniques 
are highly contextual, whereas computer classifications do not consider context (except texture).  At some 
point in the classification procedure using remotely sensed image data, it might be better to refine the 
computer classification maps using visual interpretation as is used by the field botanists.  This post-
classification analysis should significantly increase the mapping accuracy (in terms of correspondence to 
current vegetation collections) and further reduce the field survey costs.  Before that is attempted, the 
accuracy of single-species identification by the classifier should be verified in the field. 
 

Conclusions 
 

This study examined various airborne remote-sensing data that were collected during different 
seasons within a one-year time frame, at different spatial resolutions (11 cm to 100 cm), and using various 
technologies (CIR film, CIR CCDs, and multispectral data) to determine the relative merits of each data 
set for mapping riparian vegetation within the Grand Canyon.  The results of this study indicate the 
following: 
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1.  Intrinsic brightness (reflectance) is an important factor in discrimination of riparian vegetation. 
 Thus, digital cameras that can record a large range of radiance produce better classification 
accuracies than scanned film data because the scanning process typically cannot represent the true 
radiance range presented by the vegetation and bright sand surfaces found along the Colorado 
River.  In addition, digital sensors that maintain high radiometric fidelity with respect to surface 
radiance will produce higher classification accuracies than sensors that are not well calibrated. 

 
2.  Although the CIR film data acquired with overcast sky conditions produced classification 
accuracies for individual vegetation units comparable to that obtained using film and digital CIR 
data acquired under clear sky conditions, overall classification accuracy resulting from the 
overcast image data set was lower.  Although vegetation shading under overcast conditions is 
minimized or non-existent, the lower vegetation reflectance seems to be a more significant factor 
in classification accuracy than the absence of shaded vegetation.  Data acquired around the winter 
solstice may also suffer from shadows cast by the steep canyon walls.  Therefore, clear-sky data 
acquisition near the summer solstice (within 3-4 weeks of the solstice) should be a collection 
priority.  In terms of time of day, a 3-4 hour window centered at local noon minimizes shadows 
cast by the canyon walls, which are very steep in several reaches. 

 
3.  The inclusion of texture with band reflectance improves classification accuracies by 20-30% 
for the high-resolution data and much less markedly for lower resolution data.  The classification 
results using texture and band reflectance of the 11-cm film CIR data exceeds those from 30-cm 
film and digital CIR data and approaches those obtained using the full nine-band ATM data set.  
Reduction of the 11-cm data to 20 cm spatial resolution appears to maintain the proportional 
benefits of texture with respect to classification accuracy, thus 20-cm spatial resolution appears to 
be a useful spatial resolution for data acquisition. 

 
4.  Study-site classification accuracies of 52-74% produced using a four-band subset of the nine-
band ATM data (0.52-0.59 µm, 0.59-0.62 µm, 0.0.67-0.72 µm, 0.73-0.85 µm) are comparable to 
those produced using the full set of nine ATM bands.  A further reduced set of band data that 
excluded the 0.59-0.62µm band produced accuracies for several vegetation units that are 10% less 
than that obtained from the analysis of the full nine-band ATM data set.  These results suggest 
that a set of three to four visible/near-infrared bands can produce classification accuracies 
comparable to a multispectral sensor, but use of four bands produces more reliable results.  
Multispectral scanner systems that provide short-wave bands cost between $620/line km and 
$1,000/line km for data acquisition, whereas digital CCD sensor that provide three to four 
wavelength bands in the visible/near-infrared region cost about half as much.  Thus, accepting 
only slightly lower classification accuracies using a four-band CCD sensor will lower an 
operating budget by 50% over that using more sophisticated technology that offers only slightly 
better results.  The use of radiometrically calibrated, digital remote-sensing data in initial 
mapping efforts that may provide 60% accuracy, followed by field verification and possible 
conventional field surveys of the remaining 40% of a study area, show that annual monitoring 
costs for riparian habitats can be reduced by a factor of two over the current in-situ monitoring 
approach. 

 
Recommendations for Future Remote-Sensing Monitoring of Riparian Vegetation 
 

1.  Wavelength Bands - Three bands, centered within the wavelength regions of 0.53-0.54 µm, 
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0.66-0.67 µm, and 0.79-0.815 µm, should be used for classifying the riparian vegetation.  Where 
four-band sensors are available, a preference for the fourth wavelength band center should be 
either at 0.70 µm or near the 2.02-2.07 µm wavelength region, where different riparian species 
also display distinctly different amounts of reflectance. 

 
2.  Sensor - A digital sensor should be used that provides radiometrically calibrated image data.  
Calibrated image data will significantly increase classification accuracies and decrease costs 
associated with the classification process.  A two-dimensional CCD array sensor is preferred over 
a linear CCD array sensor because the former produces less geometric distortion. 

 
3.  Spatial Resolution - Image data should be acquired at a resolution near 20 cm per pixel to 
retain the textural information for typical riparian vegetation. 

 
4.  Time of Acquisition - Data should be acquired near summer solstice in order to minimize 
shading within vegetation, to minimize shadows cast over vegetation by canyon walls, and to 
provide a large sun-elevation window for daily image acquisition. 

 
5.  Positional Instrumentation - Data should be acquired using an accurate Global Positioning 
System (GPS) and Inertial Measurement Unit (IMU) that can provide at least sub-meter positional 
accuracy and preferably near 30 cm positional accuracy. 

 
6.  Rectification - All image data should be orthorectified.  It might be advantageous for only 
individual frames to be rectified so that changes in sun elevation can be considered by the 
analysts.  Commercial firms cannot generally produce digital image mosaics that are 
radiometrically controlled over large distances. 
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Table 1  ATM band wavelength ranges and calculated signal-to-noise ratios. 

 
Band 

Number 

 
Wavelength Region 

 
Wavelength 

Range 
(micrometers) 

 
Calculated 

Signal/Noise 
Ratio 
(SNR) 

 
1 

 
Blue 

 
0.42-0.44 

 
9.9 

 
2 

 
Blue 

 
0.46-0.51 

 
76.8 

 
3 

 
Green 

 
0.52-0.59 

 
110.2 

 
4 

 
Green/Red 

 
0.59-0.62 

 
129.6 

 
5 

 
Red 

 
0.62-0.67 

 
142.2 

 
6 

 
Red/Near-infrared 

 
0.67-0.72 

 
134.1 

 
7 

 
Near-infrared 

 
0.73-0.85 

 
140.1 

 
8 

 
Near-infrared 

 
0.84-0.97 

 
181.4 

 
9 

 
Short-wave infrared 

 
1.59-1.79 

 
21.2 

 
10 

 
Short-wave infrared 

 
2.10-2.40 

 
30.0 

 
11 

 
Thermal infrared (high gain) 

 
8.28-10.67 

 
16.4 

 
12 

 
Thermal infrared (low gain) 

 
8.28-10.67 

 
21.9 
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Table 2.  Vegetation units mapped by Kearsley and Ayers (2000) at the RM 43.1 site.  Both dominant and subordinate species are listed; dominant 
species are bold faced.. 
 

 
SRFR1  

 
Unit 

 
 

Tree 

 
 

Shrub 

 
 

Forbaceous 

 
 

Herbaceous 

 
 

Grass 
 

Series 
 

Association 
 

1 
 
Tamarisk 

 
Snakeweed 
Brickellbush 
Fetid marigold 

 
Prince’s plume 
Desert isocoma 

 
 

 
Three-awn grass 
Dropseed grass 

 
02 ISAC 
(desert isocoma) 

 
GUTI 
(snakeweed) 

 
2 

 
Tamarisk 

 
Arrowweed 

 
Spiny aster 

 
 

 
Dropseed grass 

 
01 TARA 
(tamarisk) 

 
TESE 
(arrowweed) 

 
3 

 
Coyote willow 
Baccharis 

 
 

 
Equisetum 

 
Horseweed 
Cudweed 

 
Canadian wild rye 

 
02 SAEX 
(coyote willow) 

 
EQFE - BAEM 
(equisetum-baccharis) 

 
4 

 
 

 
 

 
Sedge 
Rush 
Cattail 

 
Cudweed 
Plantain 

 
Phragmites 
Scratchgrass 
Red top 

 
01 TYDO 
(cattail) 

 
PHAU 
(phragmites) 

 
5 

 
Coyote willow 

 
 

 
Desert straw 
Primrose 

 
Dicoria 
Russian thistle 

 
Desert saltgrass 

 
02 SAEX 
(coyote willow) 

 
DIBR - SAIB 
(dicoria-russian thistle) 

 
1 Classification system devised by Spence et al. (1995). 
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Table 3.  Vegetation units mapped by Kearsley and Ayers (2000) at the RM 51site.  Both dominant and subordinate species are listed; dominant 
species are bold faced.. 
 

 
SRFR1  

 
Unit 

 
 

Tree 

 
 

Shrub 

 
 

Forbaceous 

 
 

Herbaceous 

 
 

Grass 
 

Series 
 

Association 
 

1 
 
Coyote willow 

 
Arroweed 

 
Primrose 

 
Dicoria 
Russian thistle 
Tickseed 

 
Dropseed grass 

 
02 SAEX 
(coyote willow) 

 
DIBR - SAIB 
(dicoria-russian thistle) 

 
2 

 
Catclaw acacia 

 
 

 
Spiny aster 

 
 

 
Three-awn grass 

 
05 ACGR 
(catclaw acacia) 

 
ASSP - ARGL 
(spiny aster-speedwell) 

 
3 

 
Tamarisk 

 
 

 
Desert alyssum 

 
 

 
Red brome 

 
01 TARA 
(tamarisk) 

 
LEFR - BRRU 
(desert alyssum-red brome) 

 
4 

 
Baccharis 
Coyote willow 

 
 

 
Equisetum 

 
Cudweed 
Horseweed 
Spiny sowthistle 

 
Red top 

 
04 SAEX - BAEM 
(coyote willow & 
baccharis) 

 
EQFE 
(equisetum) 

 
5 

 
 

 
 

 
Rush 
Cattail 
Bulrush 

 
Water-cress 
Plantain 

 
Scratchgrass 

 
01 TYDO 
(cattail) 

 
JUAR - SCIRPUS 
(rush-bulrush) 

 
1  Classification system devised by Spence et al. (1995). 
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Table 4.  Vegetation units mapped by Kearsley and Ayers (2000) at the RM 55.5 site.  Both dominant and subordinate species are listed; dominant 
species are bold faced.. 
 

 
SRFR1  

 
Unit 

 
 

Tree 

 
 

Shrub 

 
 

Forbaceous 

 
 

Herbaceous 

 
 

Grass 
 

Series 
 

Association 
 

1 
 
 

 
 

 
 

 
Speedwell 

 
Phragmites 
Redtop 

 
02 PHAU 
(phragmites) 

 
AGST 
(redtop) 

 
2 

 
Tamarisk 
Baccharis 

 
 

 
Climbing milkweed 

 
Clover 

 
Red brome 

 
01 TARA 
(tamarisk) 

 
BROMUS 
(red brome) 

 
3 

 
Coyote willow 
Baccharis 

 
Sagebrush 

 
Equisetum 

 
 

 
Scratchgrass 

 
02 SAEX 
(coyote willow) 

 
BAEM - EQFE 
(baccharis-equisetum) 

 
4 

 
Mesquite 
Catclaw acacia 

 
Arrowwed 
Snakeweed 

 
Desert alyssum 

 
 

 
Dropseed grass 
Rice grass 
Red brome 

 
06 PRGL 
(mesquite) 

 
ACGR - TESE 
(catclaw acacia-arrowweed) 

 
5 

 
 

 
 

 
Sedge 
Rush 
Common three 
square 

 
Plantain 
Marsh aster 

 
Scratchgrass 

 
02 CAAQ 
(sedge) 

 
JUTO - SCIRPUS 
(rush-bulrush) 

 
1  Classification system devised by Spence et al. (1995). 
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Table 5.  Vegetation units mapped by Kearsley and Ayers (2000) at the RM 68.2 site.  Both dominant and subordinate species are listed; dominant 
species are bold faced.. 
 

 
SRFR1  

 
Unit 

 
 

Tree 

 
 

Shrub 

 
 

Forbaceous 

 
 

Herbaceous 

 
 

Grass 
 

Series 
 

Association 
 

1 
 
Coyote willow 
Baccharis 
Tamarisk 

 
 

 
Equisetum 

 
 

 
Scratchgrass 
Phragmites 
Bent grass 

 
04 SAEX - BAEM 
(coyote willow & 
baccharis) 

 
EQFE 
(equisetum) 

 
2 

 
Coyote willow 

 
Arrowweed 

 
 

 
Clover 

 
Dropseed 
grass 

 
02 SAEX 
(coyote willow) 

 
TESE - SPCR 
(arrowweed-dropseed grass) 

 
3 

 
Tamarisk 

 
Arrowweed 

 
Camel thorn 

 
 

 
Brome grass 

 
01 TARA 
(tamarisk) 

 
TESE - BROMUS 
(arrowweed-red brome) 

 
4 

 
Mesquite 

 
 

 
Primrose 
Sand verbena 

 
Dicoria 

 
Dropseed 
Rice grass 

 
02 GUTI 
(snakeweed) 

 
ORHY - DIBR 
(rice grass-dicoria) 

 
5 

 
 

 
 

 
Cattail 
Common three square 
Rush 

 
Goldenrod 

 
 

 
01 TYDO 
(cattail) 

 
JUTO - SOOC 
(rush-goldenrod) 

 
1  Classification system devised by Spence et al. (1995). 
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Table 6.  Vegetation units mapped by Kearsley and Ayers (2000) at the RM 71.4 site.  Both dominant and subordinate species are listed; dominant 
species are bold faced.. 
 

 
SRFR1  

 
Unit 

 
 

Tree 

 
 

Shrub 

 
 

Forbaceous 

 
 

Herbaceous 

 
 

Grass 
 

Series 
 

Association 
 

1 
 
 

 
 

 
Bulrush 
Rush 
Cattail 

 
Cudweed 
Clover 

 
Phragmites 
Red top 

 
02 PHAU 
(phragmites) 

 
SCIRPUS - JUNCUS 
(bulrush-rush) 

 
2 

 
Coyote willow 
Baccharis 

 
 

 
Equisetum 
Goldenrod 

 
Clover 

 
Phragmites 
Red top 

 
02 SAEX 
(coyote willow) 

 
BAEM - EQFE 
(baccharis-equisetum) 

 
3 

 
Tamarisk 
Mesquite 

 
Arrowweed 

 
Camel thorn 
Equisetum 

 
 

 
Red brome 
Dropseed grass 

 
01 TESE 
(Arrowweed) 

 
ALCA - BRRU 
(camel thorn-red brome) 

 
4 

 
Goodding willow 
Tamarisk 

 
 

 
 

 
 

 
Red brome 

 
01 SAGO 
(goodding willow) 

 
TARA - BRRU 
(tamarisk-red brome) 

 
1  Classification system devised by Spence et al. (1995). 
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Table 7.   The following list provides the species and genus name for each of the common vegetation 
names used in the tables, figures, and text in this paper (Phillips et al. 1987). 
 
Common Names Species/genus   Common Names Species/genus  
Arrowweed  Tessaria sericia  Speedwell  Veronica 
Baccharis  Baccharis emoryi  Spiny aster  Aster spinosus 
Brickellbush  Brickellia longifolia  Spiny sowthistle Sonchus asper 
Bulrush  Scirpus   Tamarisk  Tamarix pentandra 
Camel thorn  Alhagi camelorum  Three-awn grass Aristida glauca 
Canadian wild rye Elymus canadensis  Tickseed  Corispermum nitidum 
Catclaw acacia  Acacia greggii  Water-cress  Nasturtium officinale 
Cattail   Typha domingensis  White brittlebush Encelia farinosa 
Climbing milkweed Sarcostemma cynanchoides  
Clover   Melilotus     
Common three square Scripus pungens    
Coyote willow  Salix exigua     
Cudweed  Gnaphalium chilense    
Desert alyssum  Lepidium fremontii 
Desert isocoma Isocoma acradenia   
Desert saltgrass Distichilis spicata 
Desert straw  Stephanomeria pauciflora 
Dicoria   Dicoria brandegei 
Dropseed grass Sporobolus flexuosis, cryptandrus 
Equisetum  Equisetum  
Fetid marigold  Dyssodia pentachaeta   
Goldenrod  Solidago occidentalis   
Goodding willow Salix gooddingii 
Horseweed  Conyza canadensis    
March aster  Aster subulatus    
Mesquite  Prosopis glandulosa   
Phragmites  Phragmites australis   
Plantain  Plantago major    
Primrose  Oenothera pallida   
Prince’s plum  Stanleya pinnata 
Red brome  Bromus rubens 
Red top  Agrostis stolonifera   
Rice grass  Oryzopsis hymenoides   
Rush   Juncus, Juncus torryi  
Russian thistle  Salsola iberica    
Sagebrush  Artemesia ludoviciana   
Sand verbena  Abronia elliptica 
Scratch grass  Muhlenbergia asperifolia    
Sedge   Carex aquatilis    
Snakeweed  Gutierrezia  
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Table 8.  Classification producer accuracies for overall site and individual vegetation units at each study site derived from maximum likelihood 
classification of spectral band reflectance and texture.  Overall site producer accuracies also provided for separate analyses using only the spectral 
bands. 
 

 
River Mile 
Study Site 

and 
Vegetation 

Unit 

 
 

SRFR1 
Vegetation 

Series 

 
SRFR1 

Vegetation 
Association 

 
Film 
CIR 

11 cm 
07/00 

 
Film 
CIR 

28 cm 
09/00  

 
Film 
CIR 

30.5 cm 
03/00 

 
Emerge 

CIR 
30.5 cm 
09/99 

 
Bechtel ATM 

100 cm 
07/00 

 
RM 43.1 

 
       

 
 

Unit 1 
 

Desert isocoma Snakeweed 3.5 
 

13.9   0.2 15.6 10.9 
 

Unit 2 
 

Tamarisk    Arrowweed 79.0 
 

69.5 51.2 40.0 71.4 
 

Unit 3 
 

Coyote willow Equisetum-Baccharis 72.6 
 

19.3   53.9 68.6 51.6 
 

Unit 4 
 

Cattail    Phragmites 74.5 
 

53.0 75.0 31.0 70.0 
 

Unit 5 
 

Coyote willow Dicoria-russian thistle 1.0 
 

3.0   0.0 21.1 28.2 
 
Overall accuracy using spectral & texture data 69.1 

 
36.0   51.0 51.8 53.9 

 
Overall accuracy using spectral data 59.3 

 
38.7   45.2 47.5 53.9 

 
RM 51 

 
   

 
     

Unit 1 
 

Coyote willow Dicoria-russian thistle 36.7 
 

   56.5 43.5 
 

Unit 2 
 

Catclaw acacia Spiny aster-speedwell 6.4 
 

   13.5 71.4 
 

Unit 3 
 

Tamarisk Desert alyssum-red brome 75.7 
 

   62.8 70.5 
 

Unit 4 
 
Coyote willow-Baccharis Equisetum 30.7 

 
   50.0 32.4 

 
Unit 5 

 
Cattail    Rush-bulrush 57.0 

 
68.0 71.7 

 
Overall accuracy using spectral & texture data 57.1 

 
   55.5 62.1 

 
Overall accuracy using spectral data 52.4 

 
   53.5 61.1 

 
RM 55.5 

 
   

 
     

Unit 1 
 

Phragmites    Redtop 42.5 
 

38.9 64.4 
 

Unit 2 
 

Tamarisk     Red brome 70.9 
 

54.8 47.3 
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River Mile 
Study Site 

and 
Vegetation 

Unit 

 
 

SRFR1 
Vegetation 

Series 

 
SRFR1 

Vegetation 
Association 

 
Film 
CIR 

11 cm 
07/00 

 
Film 
CIR 

28 cm 
09/00  

 
Film 
CIR 

30.5 cm 
03/00 

 
Emerge 

CIR 
30.5 cm 
09/99 

 
Bechtel ATM 

100 cm 
07/00 

 
Unit 3 

 
Coyote willow Baccharis-equisetum 41.8 

 
   44.4 64.1 

 
Unit 4 

 
Mesquite      Catclaw acacia-arrowweed 68.9

 
55.5 66.9 

 
Unit 5 

 
Sedge    Rush-bulrush 13.8 

 
30.2 57.7 

 
Overall accuracy using spectral & texture data 56.7 

 
   48.8 54.8 

 
Overall accuracy using spectral data 37.1 

 
   44.8 52.4 

 
RM 68.2 

 
   

 
     

Unit 1 
 
Coyote willow-Baccharis Equisetum 62.9 

 
67.4   27.7 54.2 69.1 

 
Unit 2 

 
Coyote willow Arrowweed-dropseed grass 46.9 

 
41.7   21.8 17.0 53.3 

 
Unit 3 

 
Tamarisk    Arrowweed-red brome 70.3 

 
56.9 81.3 78.6 72.8 

 
Unit 4 

 
Snakeweed    Rice grass-dicoria 72.6 

 
64.2 65.6 67.8 70.5 

 
Unit 5 

 
Cattail    Rush-goldenrod 3.1 

 
18.5 32.6 16.9 21.9 

 
Overall accuracy using spectral & texture data 62.6 

 
58.0   53.8 59.2 67.0 

 
Overall accuracy using spectral data 43.4 

 
40.2   55.0 57.8 62.7 

 
RM 71.4 

 
   

 
     

Unit 1 
 

Phragmites    Bulrush-rush 49.7 
 

37.4 58.7 
 

Unit 2 
 

Coyote willow Baccharis-equisetum 49.6 
 

   47.3 61.7 
 

Unit 3 
 

Arrowweed Camel thorn-red brome 55.0 
 

   39.4 75.3 
 

Unit 4 
 

Goodding willow Tamarisk-red brome 93.4 
 

   74.1 90.8 
 
Overall accuracy using spectral & texture data 71.0 

 
   56.3 78.1 

 
Overall accuracy using spectral data 40.2 

 
   48.2 75.7 

1 Classification system of Spence et al. (1994). 
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Table 9.  Vegetation unit producer accuracies and overall site producer accuracies from maximum likelihood classification results using various 
ATM band combinations and from scanned-film CIR data.  Unit accuracies that are 10% lower than those obtained using the full ATM database 
are indicated as bold-faced values. 
 

 
River Mile 
Study Site 

and 
Vegetation 

Unit 

 
SRFR1 

 Vegetation 
Series 

 
SRFR1 

 Vegetation 
Association 

 
Film 
CIR 

11 cm 
07/00 

 
Bechtel 
ATM 
bands 
3, 6, 7 

 
Bechtel 
ATM 
bands 

3, 4, 6, 7 

 
Bechtel 
ATM 
bands 

3, 4, 6, 7, 10 

 
Nine 

Bechtel 
ATM 
bands 

 
RM 43.1 

 
        

Unit 1 
 

Desert isocoma Snakeweed 3.5 12.7   14.6 7.4 10.9 
 

Unit 2 
 

Tamarisk   Arrowweed 79.0 59.4 63.1 65.7 71.4 
 

Unit 3 
 

Coyote willow Equisetum-Baccharis 72.6    46.8 53.2 59.6 51.6 
 

Unit 4 
 

Cattail   Phragmites 74.5 53.4 66.2 62.4 70.0 
 

Unit 5 
 

Coyote willow Dicoria-russian thistle 1.0 45.2   40.6 27.4 28.2 
 

Overall 
 

      69.1 47.8 52.1 55.2 53.9 
 
RM 51 

 
        

Unit 1 
 

Coyote willow Dicoria-russian thistle 36.7    40.6 39.5 45.5 43.5 
 

Unit 2 
 

Catclaw acacia Spiny aster-speedwell 6.4 50.7 68.7  64.0 71.4 
 

Unit 3 
 

Tamarisk Desert alyssum-red brome 75.7    68.2 66.1 69.4 70.5 
 

Unit 4 
 
Coyote willow-Baccharis Equisetum 30.7   27.1 22.8 28.9 32.4 

 
Unit 5 

 
Cattail  Rush-bulrush 57.0 62.2 61.6 67.3 71.7 

 
Overall 

 
      57.1 56.9 56.8 59.8 62.1 

 
RM 55.5 

 
        

Unit 1 
 

Phragmites    Red top 42.5 53.9 56.5 62.0 64.4 
 

Unit 2 
 

Tamarisk      Red brome 70.9 45.3 45.8 45.8 47.3 
 

Unit 3 
 

Coyote willow Baccharis-equisetum 41.8 57.7   58.4 63.3 64.1 
 

Unit 4 
 

Mesquite     Catclaw acacia-arrowweed 68.9 58.7 58.3 66.2 66.9 
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River Mile 
Study Site 

and 
Vegetation 

Unit 

 
SRFR1 

 Vegetation 
Series 

 
SRFR1 

 Vegetation 
Association 

 
Film 
CIR 

11 cm 
07/00 

 
Bechtel 
ATM 
bands 
3, 6, 7 

 
Bechtel 
ATM 
bands 

3, 4, 6, 7 

 
Bechtel 
ATM 
bands 

3, 4, 6, 7, 10 

 
Nine 

Bechtel 
ATM 
bands 

 
Unit 5 

 
Sedge    Rush-bulrush 13.8 52.9 52.7 56.9 57.7 

 
Overall 

 
      56.7 51.4 51.9 53.3 54.8 

 
RM 68.2 

 
        

Unit 1 
 
Coyote willow-Baccharis Equisetum 62.9 57.0 57.7 70.2 69.1 

 
Unit 2 

 
Coyote willow Arrowweed-dropseed grass 46.9    45.7 48.7 46.5 53.3 

 
Unit 3 

 
Tamarisk     Arrowweed-red brome 70.3 60.4 68.2 71.3 72.8 

 
Unit 4 

 
Snakeweed     Rice grass-dicoria 72.6 71.3 67.2 68.0 70.5 

 
Unit 5 

 
Cattail    Rush-goldenrod 3.1 25.3 23.4 22.9 21.9 

 
Overall 

 
      62.6 57.1 60.7 65.7 67.0 

 
RM 71.4 

 
        

Unit 1 
 

Phragmites   Bulrush-rush 49.7 47.4 50.0 51.0 58.7 
 

Unit 2 
 

Coyote willow Baccharis-equisetum 54.1    54.1 56.4 56.8 61.7 
 

Unit 3 
 

Arrowweed Camel thorn-red brome 55.0 73.7   74.1 76.2 75.3 
 

Unit 4 
 

Goodding willow Tamarisk-red brome 93.4    84.4 86.6 87.9 90.8 
 

Overall 
 

     71.0 72.4 74.1 75.4 78.1 
1 Classification system of Spence et al. (1994). 
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